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An energy approach is suggested in the present work for solving linear and nonlinear 
boundary problems of nonclassical theory for piecewise-inhomogeneous (layered) anisotropic 
shells containing defects of the crack type. Layered shells are considered assembled sym- 
metrically in a geometrical and physical sense in relation to their coordinate surface con- 
taining one or two colinear through crack-slits rectilinear in plan. Layers exhibit elastic 
properties of either an isotropic, or a transversely isotropic, or an orthotropic uniform 
material. The number of layers n in a package may be either even or uneven. At the separa- 
tion surfaces of layers contact conditions are fulfilled, i.e., there is absence of sliding 
and separation between layers [1-4]. The behavior of the shells in question with cracks is 
described by a geometrically nonlinear theory of the Timoshenko type. 

i. Statement of Problem. We formulate a variation problem of geometrically nonlinear Timo- 
shenko type theory for a layered orthogropic flattened shell with a crack length 2L arranged 
in the line of least resistance. We relate the coordinate surface of the shell with the 
crack to a Cartesian rectangular coordinate system X, Y, and Z whose origin is at the center 
of the crack and its axis coincides with lines of intersection for planes of elastic symmetry 
of all layers. A normal uniformly distributed load with intensity qm operates at the sur- 
face of a shell with a slit. 

The variation problem is set up as follows [5]. To determine the minimum value of func- 
tional V expressing the potential energy of a shell with a slit by proceeding from the condi- 
tion that the first variation 6V = 0 over the whole independent functional argument satisfy- 
ing conditions at the shell contour [1-3, 6, 7]: 

0 0 0 u~ = u ~  v~  = d}~, z~,~ = w ~ ,  %~ = ~ ,  t~',~ = q: , , ,  

. . . .  ~t~, H~ = n ~ 

where the first part is kinematic and the second is static boundary conditions for the whole 
package; there are boundary conditions at the separation surface Ixl ~ L with y = 0: 

N~ = O, S .  = O, Q~ = o, .1[,~ = O, n , ,  = ~. 

The general solution for the linear problem for the shell in question with a slit is 
presented in the form of the sum of solutions: the basic solution (shell without a slit) and 
disturbed solution (shell with a slit). The variation problem for a disturbed shell is for- 
mulated as follows: to determine the minimum value of functional V which expresses the poten- 
tial energy of a shell with a slit; independent functional arguments satisfying boundary con- 
ditions at the crack-slit surface: 

x n  N~,s,~ S,LQ~ Q L J ~  ' 

(N~,S~,Q~..][~ a n d  HA a r e  t e n s i l e ,  s h e a r ,  a n d  t r a n s v e r s e  f o r c e s ,  b e n d i n g  and  t o r s i o n a l  mo- 
m e n t s  f o r  t h e  w h o l e  p a c k a g e  t a k e n  f r o m  s o l u t i o n  o f  t h e  b a s i c  p r o b l e m  i n  t h a t  a r e a  w h e r e  
o c c u r r e n c e  o f  a c r a c k  i s  a s s u m e d ) ,  a n d  a l s o  c o n d i t i o n s  f o r  " i n f i n i t y "  

( u n ,  v n ,  a n d  w n a r e  d i s p l a c e m e n t s  o f  t h e  c o o r d i n a t e  s u r f a c e  a l o n g  a x e s  X, Y, and  Z r e s p e e -  
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TABLE i 

Theory 

Linear 

Nonlinear 

AlL 

2,0 

0.296 

0,3i5 

4,0 t 8,U 

13 nodes 
0,290 ] 0,292 

25 nodes 
0,318 0,317 

Ex/Ey 

16,0 

0,298 

0,318 

32,0 

0,296 

0,318 

0,3(15 

0,326 

13 nodes 

0,306 l 0,304 
25 nodes 

0,327 ! 0,325 

0,308 

0,327 

0,307 

0,328 

60,0 

0,296 

0,319 

0,307 

0,328 

tively, ~n, and @n are angles of rotation for the normal and planes XZ and YZ, and p is the 
distance from the crack tip). 

Currently solution of both the linear and nonlinear basic problems does not present any 
special difficulties [i-3, 6, 7]. Therefore we occupy ourselves with solving the disturbed 
problem. 

2. Method of Solution. The amplitude of the local symmetrical disturbed condition for 
a multilayered orthotropic shell with a crack-slit is determined by the value of stress intens- 
ity factor K~ which characterizes normal separation [4, 5]. 

In order to find factor Ki for both linear and nonlinear problems an energy approach 
is suggested: 

]" = ~ i'. [ (qr - py)( i  4- t,',1,> ( 1 ,  : l,'.>h), dS. 
S 

= ~ ' d- Za l l  j .  

(2.1) 

Here V is potential energy of a multilayer linear and nonlinear shell with a slit which may 
be determined by the Clapeyron theorem; q, p are vectors of external loads: forces and moments; 
r, 7 are vectors of displacements and rotation angles for points of the central surface; h is 
shell thickness; k I, k 2 are normal curvatures of the central surface of the shell; S is shell 
surface; G~ is intensity of energy released with an increase crack surface by hdL; rl = KI + 
KI* is total stress intensity factor; K I is stress intensity factor in tension, KI* is the 

same with bending; a,1 a{1,; an---- a2~ 32,6/32 ~ a12, a12~ = I Ex; = = I/Jy: a1~ = -- a~6 = a86; a~-- 
i=I i=l 4~i i=l 

] i ~ i v /~y;  E~, Ey a r e  Young s modul i  f o r  t h e  l a y e r s ;  ~xZy i s  S h ea r  modulus  f o r  t h e  l a y e r s ;  v i i s  xy 
P o i s s o n ' s  r a t i o  f o r  t h e  l a y e r s .  

In calculating intensities G~ we shall use two methods: first the derivative is replaced 
by finite differences, and here it is necessary as a minimum to calculate for two crack 
lengths, it is a simple version of the energy approach to 0 determining K~ and it is called 

second in order to obtain the the method of differential stiffness (compliance method); • 

increment in potential energy for a shell with a crack 

_~Y= Y(L ~L)-- V(L) ( 2 . 2 )  

It is not possible to consider the increase in crack length for one of several cells of the 
grid, and due to this the change in coordinates of the crack tip within a cell to prescribe 
its propagation. As a result of this observation there is a change in the stiffness of ele- 
ments immediately adjacent to the crack tip, and by taking this into account sets of linear 
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and nonlinear equations are solved. A subprogram is written which makes it possible to real- 
ize this feature and thereby to calculate for one solution the change in energy by Eq. (2.2). 
This version of the energy approach is called the method of virtual crack growth. 

In view of the fact that for linear problems the Timoshenko model used in the present 
work makes it possible to combine stress intensity factors in tension and bending, deriva- 
tion of the relationship between factor K~ and intensity G~ from (2.1) involves the follow- 
ing: it takes the hypothesis that the surface layer of the fiext shell layer in the region of 
the crack tip locally at the stretched side behaves similar to a plate which is in a condi- 
tion of uniform tension; then considering the principle of superposition displacement of the 
points at the shell surface layer in question is presented in the form of sum v = v I + v 2 
(v I is displacement of a point with coordinate z = -h/2 in tension, v 2 is the same with 
bending). Assuming that the crack grows with constant stress Oy arising at point z = -h/2, 
the jump in displacment v at the crack gives the flow of energy sought with intensity 

= o~ = - ~ - \ . - z  ~' ,(~, ~  - ~  ' 
--h/2 --L 

(2.3) 

- o ' ,1:2) 112 Re [ (l]sl -~ s, where U+--U 

of the biquadratic equation for orthotropic material. 

By substituting an expression for the jump in (2.3), integrating with respect to h and 

L and differentiating with respect to L, and also considering that K'~ = o~j Pf.~-L and h = I, 

we have 
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i  12% o 
= ,-7 HeL s~s,, j (2.4) 

with values of s t taken from [8], in (2.4) we obtain the relationship sought, and it is pos- 
sible to use it for nonlinear problems based on a theorem proved in [9] from which it follows 
that the main part of the asymptotics for the energy solution at the slit tip is governed by 
its linear part. If the approximate nature of the grounds for using the dependence of K ~ on 
0 I 

G I for the nonlinear case does not satisfy the reader, then in the calculation it is possible 
to limit oneself to calculating intensity G o 

f" 
If in the third equation of (2.1) elastic constants are substituted which characterize 

transversely isotropic layers then we find an expression (A'~) ~ G~E, where if i + h~Ei 
�9 = =2'7~ 

is the elastiscitymodulus for the package. Relationship (2.3) will be used in calculating the 

factor for a layered transversely isotropic and isotropic shells with cracks. 

The main difficulty in both methods is calculation of the component vectors at displace- 
ments and rotation angles. The finite element method (FEM) is used in a displacement 
version. The main part of the FEM is derivation of the stiffness matrix by means of which 
it is possible to establish the relationship between nodal forces and displacements corre- 
sponding to them. On the basis of [4, I0] a stiffness matrix is obtained for a rectangular 
finite element of nonzero Gaussian curvature of layered orthotropic material for geometric 
nonlinear theory of the Timoshenko type�9 and it is also used for calculating layered trans- 
versely isotopic and isotropic arbitrary shells with cracks. 

3. Numerical Examples and Analysis. We consider a five-layer isotropic, square, 
freely supported cylindrical panel with three cases of crack arrangement; I) in the center�9 
II) at the side, III) at both sides. Geometrical and physical characteristics of tlhe panel 
shown in Fig. 1 are as follows: h = 0.01 m, R = 0.20 m, a = 0.30 m; f = 0.0677 m, ~ = 0.3. 
Presented in Fig, 1 are curves for the dependence of Ki on parameter L/a. For all situations 
of crack arrangement the axis of panel symmetry was broken down into 13 and 25 nodes. With 
breakdown of the panel axis into 13 nodes factor K~ was calculated by the compliance method�9 
and with breaking it down into 25 nodes it was determined by the method of virtual crack 
growth (a feature of the methods was considered; for the first the simplicity and availabil- 
ity, and for the second accuracy and economy). The relative error between the curw=-s ob- 
tained with breaking down the axis of symmetry into 13 and 25 nodes with all cases of slit 
arrangement did not exceed 6%. 

For the panel described above, but made of transversely isotropic layer s , curves are 
plotted in Fig. 2 for the dependence of KI ~ on '~' (~' is a parameter which characterizes the 
transversality of the panel over the thickness) for all situations of crack arrangement with 
h/L = i. The method of breaking down the axis of panel symmetry and methods for obtaining 
values of K~ are similar to the previous case. It can be seen from Fig. 2 that factor Ki 
depends markedly on shell transversality over the thickness. 

We consider precisely the same panel as that above�9 but made of orthotropic material 
(glass-reinforced plastic) with a crack at the center�9 and we determine the effect of degree 
of orthotropy Ex/Ey on KI ~ Results are presented in Table 1 from the analysis of which it 

0 q can be seen that the degree of orthotropy does not affect K I . The relative error between 
calculations relates to the calculation error and the effect of grid spacing. 

Shown in Figs. 1 and 2 by broken lines are curves obtained on the basis of geometrical 
nonlinear theory�9 and by analyzing them it is possible to conclude the geometric nonlinearity 
affects the amplitude of factor Ki, i.e., with use of more precise shell theory it becomes 
softer and the value of the intensity factor increases. 
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